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Copyright information to be inserted by the PublishersCSDP, a C library for semide�nite programming.Brian BorchersDepartment of Mathematics, New Mexico Tech, Socorro, NM 87801, USA(Received date to be inserted)1 IntroductionA number of codes for semide�nite programming (SDP) are already available, in-cluding [1, 3, 8, 9, 10]. Why introduce yet another code for SDP?CSDP is written in C for e�ciency and portability. The code is designed to makeuse of highly optimized linear algebra routines from the LINPACK or LAPACKlibraries. CSDP is distributed with version of the necessary LINPACK routinesthat have been translated into C. The package also includes an optimized versionof the BLAS routine DGEMM [6, 7].CSDP is designed to handle constraint matrices with general sparse structure.CSDP can accommodate linear inequality constraints as well as linear equalityconstraints. In addition to its SDP solver, the CSDP library contains routines forreading and writing SDP problems and solutions. The code has been designed foruse both as a stand alone solver and as a callable subroutine for use within largerprograms that require the solution of SDP subproblems. We present results fromthe solution of the SDPLIB test problems [2]. CSDP has also been used in a codefor the solution of MAX-2-SAT problems [5].The remainder of this paper is organized as follows. First, we discuss the formula-tion of the semide�nite programming problem used by CSDP. We then describe thepredictor corrector algorithm used by CSDP to solve the SDP. We discuss the stor-age requirements of the algorithm as well as its computational complexity. Finally,we present results from the solution of a number of test problems.2 The SDP ProblemWe consider semide�nite programming problems of the formmax tr (CX)A(X) = aB(X) � bX � 0 (1)1
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2 B. Borcherswhere A(X) = 2664 tr (A1X)tr (A2X): : :tr (AkX) 3775 (2)and B(X) = 2664 tr (B1X)tr (B2X): : :tr (BlX) 3775 : (3)All of the matrices are assumed to be symmetric.The dual of this SDP ismin aT y + bT tAT (y) +BT (t)� C = ZZ � 0t � 0 (4)where AT (y) = kXi=1 yiAi (5)and BT (t) = lXi=1 tiBi: (6)3 The Predictor Corrector AlgorithmThe algorithm for SDP discussed in this section is a predictor corrector variant ofthe algorithm presented by Helmberg, Rendl, Vanderbei, and Wolkowicz [4]. Wewill make frequent reference to this paper, and use its notation. We begin with thedual barrier problemmin aT y + bT t� �(log detZ + eT log t)AT (y) +BT (t)� C = ZZ � 0t � 0: (7)The algorithm works by taking steps towards a solution to (7), and slowly reducingthe parameter �. In the limit as � goes to 0, we obtain a solution to (1). It can beshown that an optimal solution to (7) has� = tr(ZX) + tT (b�B(X))(n+m) : (8)



www.manaraa.com

CSDP 3In order to drive � to zero, at each iteration of the algorithm we adjust � to� = tr(ZX) + tT (b�B(X))2(n+m) : (9)The �rst order necessary optimality conditions for (7) areZ + C �AT (y)�BT (t) = 0a�A(X) = 0b�B(X)� �t�1 = 0X � �Z�1 = 0: (10)Our algorithm is designed to work with a starting solution that may not satisfyA(X) = a or Z = AT (y) +BT (t)� C, so we de�neFp = a�A(X) (11)and Fd = �AT y �BT (t) + C + Z: (12)The predictor step is the Newton's method step for these equations with � = 0.�Ẑ �AT (�ŷ)�BT (�t̂) = �Fd�A(�X̂) = �Fp�t̂ � (b�B(X))� t �B(�X̂) = �t � (b�B(X))Z�X̂ +�ẐX = �ZX: (13)These equations are solved as in [4]. We reduce (13) toA(Z�1AT (�ŷ)X) +A(Z�1BT (�t̂)X) = �a+A(Z�1FdX)B(Z�1AT (�ŷ)X) + (b�B(X)) � t�1 ��t̂+B(Z�1BT (�t̂)X) = �b+B(Z�1FdX):(14)In matrix form, this system of equations can be written as� O11 O12O21 O22 � � �ŷ�t̂ � = � �a+A(Z�1FdX)�b+B(Z�1FdX) � (15)whereO11 = � A(Z�1AT (e1)X) : : : A(Z�1AT (ek)X) �O12 = � A(Z�1BT (e1)X) : : : A(Z�1BT (el)X) �O21 = � B(Z�1AT (e1)X) : : : B(Z�1AT (ek)X) �O22 = � B(Z�1BT (e1)X) : : : B(Z�1BT (el)X) �+ diag ((b�B(X) � t�1):(16)As Helmberg, Rendl, Vanderbei, and Wolkowicz have shown, the O matrix is sym-metric and positive de�nite [4]. Thus we can compute Cholesky factorization ofO and then use the factorization to solve the system of equations. Once we havesolved these equations for �ŷ and �t̂, we compute �X̂ and �Ẑ as�X̂ = �X + Z�1FdX � Z�1(AT (�ŷ) +BT (�t̂))X (17)



www.manaraa.com

4 B. Borchersand �Ẑ = �Fd +AT (�ŷ) +BT (�t̂): (18)Note that �X̂ might not be symmetric. In order to keep our solution X symmetric,we force �X̂ to be symmetric by averaging the o� diagonal entries.For the corrector step, we compute a Newton step from (X +�X̂; Z +�Ẑ; y +�ŷ; t+�t̂) towards a solution to (10).� �Z �AT (��y)�BT (��t) = 0�A(� �X) = 0��t � (b�B(X +�X̂))� t �B(� �X) = �e� t � (b�B(X +�X̂))(Z +�Ẑ)� �X +� �Z(X +�X̂) = �(Z +�Ẑ)(X +�X̂) + �I: (19)Dropping higher order terms from the left hand side, and simplifying the right handside, we obtain� �Z �AT (��y)�BT (��t) = 0�A(� �X) = 0��t � (b�B(X))� t �B(� �X) = �e� t � (b�B(X +�X̂))Z� �X +� �ZX = ��Ẑ�X̂ + �I: (20)These equations have the same form as (13) and are solved as before to obtain(� �X;� �Z;��y;��t). Next, we add the predictor and corrector steps to compute�X = �X̂ +� �X�Z = �Ẑ +� �Z�y = �ŷ +��y�t = �t̂+��t: (21)We would like to take full steps of length one in each of X , y, t, and Z. However,there is a chance that this would lead to an infeasible solution. Thus we perform aline search to �nd the maximum safe steps �P and �D . Finally, we move from thecurrent point (X; y; t; Z) to (X + �P�X; y + �D�y; t+ �D�t; Z + �D�Z).In practice, the system matrix O may become numerically singular even thoughX and Z are numerically nonsingular. In this case, CSDP returns to the previoussolution, and executes a centering step with� = tr(ZX) + tT (b�B(X))(n+m) : (22)Users of CSDP can specify their own termination criteria. However, the defaultcriteria are that jtr(CX)�(aT y+bT t)j1+j(aT y+bT t)j < 1:0� 10�7jjA(x)�ajj1+jjajj < 1:0� 10�7jjAT (y)+BT (t)�C�ZjjF1+jjCjjF < 1:0� 10�7BT (t) � bt � 0X;Z � 0: (23)
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CSDP 54 Computational ComplexityIn this section we consider the storage requirements and computational complexityof the predictor corrector algorithm. We will consider a problem with n by nmatrices, X , Z, and C, and m equality constraints. The analysis is essentiallyunchanged by the addition of inequality constraints.In addition to the problem data, our implementation of the algorithm requiresone array of size m by m, and twelve arrays of size n by n. Assuming that theconstraint matrices are sparse, and assuming that m is much larger than n, thestorage required by the system matrix, O, usually dominates the total storagerequirements. For example, in computing the Lovasz # number of a graph with 100nodes and 1000 edges, n is 100, while m is 1,001. In our example, the 1,001 by1,001 matrix O occupies over 8 megabytes of storage, while the 100 by 100 matricesoccupy a total of about 1 megabyte of storage. In this example, there are a totalof 1,100 nonzero entries in the constraint matrices.In practice, the number of iterations required by the algorithm is generally lessthan 30, and seems to grow slowly with the size of the problem. For that reason,we'll focus on the computational complexity of a single iteration of the algorithm.In the implementation of the semide�nite programming algorithm, there are threecomputational tasks that are of particular signi�cance:�Computing the system matrix O, requires O(m(n2m+ n3)) time. This is in theworst case, assuming that the constraint matrices are dense.�Factoring the system matrix O, requires O(m3) time.�Factoring matrices of size n, requires O(n3) time.Since m is often much larger than n, computing and factoring the O matrix is usu-ally much harder than various operations on the n by n matrices. In our example,factoring the 1; 001 by 1; 001 matrix O is about 1; 000 times harder than factoringone of the 100 by 100 matrices.This analysis assumes that the constraint matrices Ai are fully dense matrices. Inmany cases, these matrices are sparse, and considerable performance improvementis possible in the construction of O. If the individual constraint matrices have O(1)nonzero entries, a simple analysis shows that we can construct O in O(m(n2 +m))time. Unfortunately, the system matrix O is normally dense, so there is no way toexploit sparsity in factoring O.Thus if m is somewhat larger than n, and the constraint matrices are sparse, themost di�cult part of each iteration is computing the Cholesky factorization of a mby m matrix. In our implementation, we have used routines from the LINPACKor LAPACK libraries to compute this factorization. On many systems, highlyoptimized versions of the libraries are available. Using such an optimized librarycan greatly improve the performance of CSDP.It should also be noted that in some cases it is possible to greatly simplify thecomputation of A(X), AT (y), B(X), BT (t) and O. For example, if the constraintsare of the form Xi;i = 1, i = 1 : : : n, then A(X) = diag(X), AT (y) = diag(y), and
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6 B. BorchersO = X � Z�1. CSDP allows the user to write routines that implement specializedversions of these operations.5 Test ProblemsIn this section, we discuss the solution of a set of test problems taken from [2]. Forcomparison, we also report results from SDPA version 4.2 [3]. All computationswere performed on a Sun Ultra 1/170 workstation under Solaris 2.5.1. For theseruns, 256 megabytes of virtual storage were available. A time limit of 12 CPU hourswas also enforced.For these problems, CSDP used an initial solution similar to the one used in [9].This initial solution has X = �IZ = �Iy = 0 (24)where � = nmaxk (1 + jakj)=(1 + jjAkjjF ) (25)and � = (1 +max(maxk (jjAkjjF ); jjCjjF ))=pn: (26)Computational results for the SDPLIB problems are shown in tables 1 through3. The notation \> 12 hrs" indicates that one of the codes couldn't solve theproblem within the 12 CPU hour time limit. The notation \mem" indicates thatthe problem couldn't be solved within the 256 megabytes of available virtual stor-age. Problems infp1, infp2, infd1, and infd2 are infeasible problems, so no optimalobjective function value is given.In general, the two codes produced solutions of comparable quality. In somecases SDPA �nds a more accurate solution while in other cases CSDP obtains amore accurate solution. There are some problems which CSDP was able to solvebut SDPA was not able to solve. For the 83 problems that were solved by bothcodes, CSDP required roughly 99,000 CPU seconds, while SDPA required roughly155,000 CPU seconds. CSDP ranged from about 3 times slower than SDPA (onproblem ss30 ) to about 15 times faster than SDPA (on problem gpp250{1). Thegeometric mean of the ratio of CSDP CPU times to SDPA CPU times was 71%.
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CSDP 7Problem CSDP Time SDPA Time CSDP Objective SDPA Objectivearch0 361.45 278.56 5.66517e-01 5.66517e-01arch2 350.72 274.23 6.71515e-01 6.71515e-01arch4 350.87 274.14 9.72627e-01 9.726274e-01arch8 350.80 430.08 7.05698e-01 7.05698e+00control1 0.21 0.33 1.778463e+01 1.778463e+01control2 2.60 2.87 8.300000e+00 8.300000e+00control3 29.33 15.37 1.36333e+01 1.363327e+01control4 69.13 55.48 1.9794231e+01 1.979423e+01control5 271.67 173.06 1.68836e+01 1.68836e+01control6 589.05 420.96 3.7304e+01 3.73044e+01control7 1911.79 1059.92 2.06251e+01 2.06251e+01control8 2866.11 1891.44 2.0286e+01 2.0286e+01control9 6670.55 3327.05 1.46754e+01 1.46754e+01control10 11266.10 6386.39 3.8533e+01 3.8533e+01control11 18660.34 10078.41 3.1959e+01 3.1959e+01equalG11 17050.98 > 12 hrs 6.29155e+02 N/AequalG51 22401.03 mem 4.0056e+03 N/Agpp100 20.36 28.02 -4.494356e+01 -4.494354e+01gpp124-1 43.06 58.20 -7.3431e+00 -7.34307e+00gpp124-2 40.34 52.31 -4.6862e+01 -4.686229e+01gpp124-3 49.99 52.31 -1.53014e+02 -1.530141e+02gpp124-4 39.18 49.37 -4.1899e+02 -4.189876e+02gpp250-1 238.27 3465.69 -1.545e+01 -1.54449e+01gpp250-2 283.99 655.61 -8.18690e+01 -8.1869e+01gpp250-3 303.64 904.43 -3.035393e+02 -3.03539e+02gpp250-4 308.19 691.70 -7.4733e+02 -7.4733e+02gpp500-1 2592.63 7615.40 -2.5321e+01 -2.5321e+01gpp500-2 2741.75 7369.71 -1.5606e+02 -1.5606e+02gpp500-3 2807.34 8507.22 -5.1302e+03 -5.130176e+02gpp500-4 2854.80 6921.48 -1.56702e+03 -1.567019e+03hinf1 0.10 0.13 2.0326e+00 2.033e+00hinf2 0.11 0.47 1.0967e+01 1.0967e+01hinf3 0.22 0.15 5.694e+01 5.69e+01hinf4 0.16 0.30 2.7476e+02 2.74764e+02hinf5 0.19 0.15 3.623e+02 3.63e+02hinf6 0.13 0.17 4.489e+02 4.490e+02TABLE 1: Computational results for SDPLIB problems.
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8 B. BorchersProblem CSDP Time SDPA Time CSDP Objective SDPA Objectivehinf7 0.16 0.11 3.90813e+02 3.91e+02hinf8 0.14 0.15 1.16e+02 1.16e+02hinf9 0.43 0.71 2.3624926e+02 2.36250e+02hinf10 0.18 0.43 1.088e+02 1.088e+02hinf11 0.37 0.81 6.59e+01 6.59e+01hinf12 0.98 1.36 2e-03 3e-01hinf13 1.37 1.50 4.5e+01 4.6e+01hinf14 3.32 1.60 1.30e+01 1.30e+01hinf15 4.27 2.64 2e+01 3e+01hinf37 0.44 0.69 2.3624926e+02 2.3625e+02infd1 2.27 1.62 infeasible infeasibleinfd2 2.24 1.61 infeasible infeasibleinfp1 2.41 1.51 infeasible infeasibleinfp2 2.42 1.54 infeasible infeasiblemaxG11 4753.31 33421.29 6.291648e+02 6.291648e+02maxG32 mem mem N/A N/AmaxG51 9473.27 mem 4.006256e+03 N/AmaxG55 mem mem N/A N/AmaxG60 mem mem N/A N/Amcp100 7.12 21.19 2.26158e+02 2.26157e+02mcp124-1 13.03 40.87 1.419905e+02 1.419905e+02mcp124-2 13.38 41.28 2.6988017e+02 2.698802e+02mcp124-3 13.55 41.13 4.677501e+02 4.677501e+02mcp124-4 13.78 41.39 8.64412e+02 8.64412e+02mcp250-1 110.14 482.05 3.172643e+02 3.172643e+02mcp250-2 106.60 467.56 5.319301e+02 5.31930e+02mcp250-3 113.07 460.65 9.811726e+02 9.81173e+02mcp250-4 113.92 458.80 1.6819601e+03 1.681960e+03mcp500-1 1066.92 6204.96 5.981485e+02 5.981485e+02mcp500-2 1144.44 6425.27 1.070057e+03 1.070057e+03mcp500-3 1106.41 5913.67 1.8479700e+03 1.847970e+03mcp500-4 1108.68 6011.22 3.566738e+03 3.566738e+03qap5 2.48 1.63 -4.36e+02 -4.360e+02qap6 8.12 6.94 -3.81e+02 -3.8144e+02qap7 20.83 15.42 -4.25e+02 -4.25e+02qap8 48.33 44.73 -7.57e+02 -7.57e+02qap9 141.01 103.24 -1.41e+03 -1.41e+03qap10 499.98 326.12 -1.09e+03 -1.093e+03TABLE 2: Computational results for SDPLIB problems.
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CSDP 9

Problem CSDP Time SDPA Time CSDP Objective SDPA ObjectiveqpG11 34223.08 mem 2.4486591e+03 N/AqpG51 mem mem N/A N/Ass30 4341.35 1490.72 2.023951e+01 2.02395e+01theta1 2.13 3.22 2.300000e+01 2.300000e+01theta2 45.72 53.81 3.287917e+01 3.287917e+01theta3 382.85 410.87 4.216698e+01 4.216698e+01theta4 1892.59 2039.09 5.032122e+01 5.032122e+01theta5 6183.24 7580.55 5.72323e+01 5.723231e+01theta6 19457.96 21525.76 6.347709e+01 6.347709e+01thetaG11 37060.79 > 12 hrs 4.000000e+02 N/AthetaG51 mem mem N/A N/Atruss1 0.04 0.10 -9.00000e+00 -8.999996e+00truss2 2.40 3.55 -1.2338036e+02 -1.233804e+02truss3 0.17 0.40 -9.11000e+00 -9.109996e+00truss4 0.07 0.15 -9.009996e+00 -9.01000e+00truss5 51.46 49.12 -1.3263568e+02 -1.326357e+02truss6 96.91 83.65 -9.010014e+02 -9.010014e+02truss7 21.47 22.44 -9.000014e+02 -9.0000e+02truss8 486.37 176.76 -1.3311459e+02 -1.331146e+02TABLE 3: Computational results for SDPLIB problems.
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